
User-Manual
KUNBUS-Scripter

PR100087R03_US • 6/12/2019

Table of Contents KUNBUS GmbH

ii KUNBUS-Scripter

Table of Contents
1 Overview .. 3

1.1 Overview.. 3
1.2 Functionality .. 4
1.3 Start Menu ... 7

2 KUNBUS Script Editor ... 8
2.1 Overview.. 8
2.2 Menu bar ... 9
2.3 Toolbar .. 14
2.4 Script Editor ... 16
2.5 Starting script... 18
2.6 Trace monitor .. 18
2.7 Message Window .. 20

3 KUNBUS Script Wizard... 22
3.1 Overview.. 22
3.2 Menu bar ... 23
3.3 Toolbar .. 27
3.4 Creating Script with the KUNBUS-Wizard ... 29

4 Appendix.. 40
4.1 Example Script .. 40
4.2 Overview of the Script Commands .. 41

KUNBUS-Scripter 3 / 46

1 Overview

1.1 Overview
With the KUNBUS Scripter you can exchange data in any format with
any devices via a serial interface.

The KUNBUS-Scripter is divided into three components:

KUNBUS Script Wizard
The Script Wizard allows you to create a script without requiring any
programming skills. We provide you with predefined templates for
query-response telegrams. Furthermore, you have the option to
create your own templates for commands.

KUNBUS Script Editor
With the Script Editor you can edit your script like in text software.
The Editor supports you by means of:
– auto-complete
– syntax highlighting

Both components have a trace. This allows you to trace which values
the variables accept in the script and where an error occurs.

Once you have created a script in the Script Wizard or Script Editor,
you can transfer the script to the module.

Interpreter on the Module
The interpreter on the module processes the transferred scripts.

O
ve

rv
ie

w

KUNBUS-Scripter 4 / 46

1.2 Functionality
Communication Sequence Once you have created a script, it is saved as a PBS file. The

abbreviation PBS stands for Protocol Builder Script.

During compilation, a binary file is generated from the script. This
binary file is transferred to the module via the Common Debug
Interface (CDI) and stored in the flash. The binary file is processed in
the module.

The trace is sent back to the PC via the CDI interface. As a result,
you can view the current value of the variables in the Script Wizard
and Script Editor.

Script structure and execution The script consists of several sections. Each of these sections has a
specific task.

The script starts in the CONFIG section via the INIT section after
RUN, or several RUN sections are continued. The script is executed
cyclically.
– SECTION_CONFIG

Commands in this section are for the unique configuration of the
module. Here, you can define the following settings on the serial
interface:
Bitrate
byte sequence for the protocol
declaration of the variables

– SECTION_INIT
Commands in this section are for the initialization of the module. Here,
you can set variables and Modbus registers to start values.

– SECTION_RUN
The script can contain several pairs from SECTION_RUN and
SECTION_ERROR that are executed sequentially. After the last
SECTION_RUN, the protocol jumps again to the first SECTION_RUN.

– SECTION_ERROR
If an error occurs in SECTION_RUN, the following SECTION_ERROR
is executed. Afterwards, the script continues running in the following
SECTION_RUN.
If an error reoccurs in SECTION_ERROR, the SECTION_FATAL will be
executed next.

– SECTION_FATAL
Fatal errors occur in this section. These errors could not be resolved in
the SECTION_ERROR.
The script with SECTION_INIT is restarted after the code of
SECTION_FATAL.
You can stop the execution of the script manually using the stop()
command. The script then restarts after the next module reset.

O
ve

rv
ie

w

KUNBUS-Scripter 5 / 46

Illustration 1: Script structure

The current implementation is based on a two-stage error or
exception model. This model controls the individual sections by
implicit jumps. If the script is currently located in the section RUN, it
jumps to the following section ERROR if an error occurs (first error
stage). Once the commands have been processed in this section, the

O
ve

rv
ie

w

KUNBUS-Scripter 6 / 46

script jumps to the start of the next section RUN. If the current
section RUN is the last sequence, the script then jumps to the first
section RUN.

The section INIT does not normally contain any critical commands
that interact with the target application. If an error should occur in this
section, however, the script jumps to the section FATAL (second
error stage). An error within the section ERROR also causes a jump
to FATAL. After the section FATAL, the script is restarted, i.e. it is
executed from the section INIT. To prevent a restart, e.g. because
continuing a script in the event of an error would not make any
sense, a stop() command can be inserted.

O
ve

rv
ie

w

KUNBUS-Scripter 7 / 46

1.3 Start Menu
Please visit our Homepage (www.kunbus.com). Here, you will find
the File "Setup_KUNBUS_Scripter.exe".

◦ Download the file "Setup_KUNBUS_Scripter.exe".
◦ Double-click to start the file
ð The start menu opens

In the start menu of the KUNBUS-Scripter you can select how you
would like to create the protocol.
– The "Script Wizard" function requires very few programming skills. You

can use a script template or compile a script yourself from existing
modules.

– You write the script in a text editor using the "Script Editor" function.
Here, we provide several features to make the work easier for you.

◦ Select the required function and confirm it by pressing "OK"

Illustration 2: Start Menu

O
ve

rv
ie

w

http://www.kunbus.com

KUNBUS-Scripter 8 / 46

2 KUNBUS Script Editor

2.1 Overview

Script Editor Overview
The desktop of the Script Editor is divided into three windows.
– In the Script Editor (5) you write your script
– The display window for messages (9) contains information on the status

of your script
– On the Trace-Monitor (7) you can trace the sequence of your script.

1 2 3 4 5 6

7

8

9

10

Illustration 3: Protocol builder

1 Window bar 2 Menu bar
3 Toolbar 4 Window bar editor
5 Script editor 6 Trace status bar
7 Trace monitor 8 Toolbar of the message window
9 Display window for messages 10 Status bar

K
U

N
B

U
S

 S
cr

ip
t E

di
to

r

KUNBUS-Scripter 9 / 46

2.2 Menu bar
This section describes the individual functions in the menu bar.

1 File

Illustration 4: Menu File

1.1 New:
Open an empty script.

1.2 Open:
Open an existing script.

1.3 Close:
Close the opened script.

1.5 Print:
Print script.

1.6 Save:
Save as PBS file.

1.7 Save As:
Save as PBS file. You can define the file name and storage location.

K
U

N
B

U
S

 S
cr

ip
t E

di
to

r

KUNBUS-Scripter 10 / 46

1.8 Settings
1.8.1 Connection Settings
Define communication settings between PC and module.

Illustration 5: Connection settings

1.8.2 Connection Commands
Overview of the permitted syntax.
Info!: This menu is purely informative. You cannot assign any of your
own values here.

Illustration 6: Command settings

1.9 Exit:
Exit program.

K
U

N
B

U
S

 S
cr

ip
t E

di
to

r

KUNBUS-Scripter 11 / 46

2. Edit

2.1 Undo:
Undo last entry.

2.2 Redo:
Redo last entry.

2.3 Cut:
Cut a selected area.

2.4 Copy:
Copy a selected area.

2.5 Paste:
Insert a previously copied or cut area at the selected position.

2.6 Select All:
Select all the editing area.

2.7 Find:
Find a term in the editor.

K
U

N
B

U
S

 S
cr

ip
t E

di
to

r

KUNBUS-Scripter 12 / 46

3. Build

Illustration 7: Build Menu

3.1 Build Script:
Check script for errors and generate a binary file.

4. Debug

Illustration 8: Debug menu

4.1 Start Debugging:
Check script for errors and generate a binary file. If the file is error-
free, it is loaded into the module and executed. A debug connection
to the module exists from now on. The trace can be displayed.

4.2 Start Without Downloading:
Check whether the script in the editor and the script on the module
are identical. If this is the case, a trace connection is established.
The trace can be displayed from now on. The script will not be
interrupted or restarted thereby.

4.3 Stop Debugging:
Interrupt the communication with the module.

4.4 Reset Device:
Restart module.

K
U

N
B

U
S

 S
cr

ip
t E

di
to

r

KUNBUS-Scripter 13 / 46

5. Trace

5.1 Start Single Tracing:
Display sequence of the script in the trace monitor. In Single Tracing
mode a single script sequence is polled. This function is useful if you
want to exactly trace a specific position in the script sequence.

5.2 Start Continuous Tracing:
Display sequence of the script in the trace monitor. In Continuous
Tracing mode the trace is polled cyclically.

5.3 Stop Tracing:
Stops the trace connection.

6. Help

Illustration 9: Help menu

6.1 About KUNBUS Scripter:
Displays system information about KUNBUS-Scripter.

6.2 KUNBUS Scripter Documentation:
Displays help topics about the Scripter.

Among other things, you will also find the syntax here.

K
U

N
B

U
S

 S
cr

ip
t E

di
to

r

KUNBUS-Scripter 14 / 46

2.3 Toolbar
You have quick access to the following operations via the toolbar:

New

Open an empty script.

Open

Open an existing script.

Save

Save as PBS file.

Find

Find a term in the editor.

Print

Print script.

Cut

Cut a selected area.

Copy

Copy a selected area.

Paste

Insert a previously copied or cut area at the selected position.

Control character Displays or hides control character.
Undo entry

Undo last entry.

Redo entry

Redo last entry.

K
U

N
B

U
S

 S
cr

ip
t E

di
to

r

KUNBUS-Scripter 15 / 46

Compile script

Check script for errors and generate a binary file.

Start Debug

Check script for errors and generate a binary file. If the file is error-
free, it is loaded into the module and executed. A debug connection
to the module exists from now on. The trace can be displayed.

Start Without Downloading

Check whether the script in the editor and the script on the module
are identical. If this is the case, a trace connection is established.
The trace can be displayed from now on. The script will not be
interrupted or restarted thereby.

Stop Debug

Stops the debug connection.

Reset Module

Restart module.
Start Single Tracing

Display sequence of the script in the trace monitor. In Single Tracing
mode a single script sequence is polled. This function is useful if you
want to exactly trace a specific position in the script sequence.

Start Continuous Tracing

Display sequence of the script in the trace monitor. In Continuous
Tracing mode the trace is polled cyclically.

Stop Tracing

Stops the trace connection.

K
U

N
B

U
S

 S
cr

ip
t E

di
to

r

KUNBUS-Scripter 16 / 46

2.4 Script Editor
In the text editor you can write your script.

Please pay attention to the predefined Functionality [} 4] and
Overview of the Script Commands [} 41] used

Navigation and orientation aids
Navigation You have the option of opening several scripts in the Editor. A new

tab appears with each script in the navigation bar at the upper
window edge of the editor. You can switch between these views by:
– clicking on the required tab or
– by clicking on the down arrow on the right-hand side and then clicking

on the desired script.
Syntax highlighting Functions, comments, values and variables are displayed in colour

for easier orientation
– Functions: blue
– Values: pink
– Variables: black
– Comments: green

Illustration 10: Syntax highlighting

K
U

N
B

U
S

 S
cr

ip
t E

di
to

r

KUNBUS-Scripter 17 / 46

Labor-saving functions
Automatic text completion The KUNBUS-Scripter supports you by completing the text of the

permissible syntax automatically.
◦ Write the first letters in the Editor of the desired syntax in the Editor.

ð A selection window will already open after the first letter.
◦ Click on the desired syntax.
ð The selected syntax is accepted by the Editor.

Indentation of text blocks ◦ Select the required text block
◦ Select "AutoIndent selected text" in the context menu
ð The selected text will now be displayed indented.

K
U

N
B

U
S

 S
cr

ip
t E

di
to

r

KUNBUS-Scripter 18 / 46

2.5 Starting script
Prerequisite: You have created a script in the Editor or opened an
existing script.

◦ In the toolbar, select the function "Connect"
ð A connection to the module is established

◦ In the toolbar, select the function "Compile File"
ð With this function you compile the script.

◦ In the toolbar, select the function "Start Debug"
ð With this function you start the script.

ð Terminate the connection by selecting

2.6 Trace monitor
On the Trace-Monitor you have the possibility to trace the sequence
of your script. The Trace-Monitor window will open on the right-hand
side next to the Editor window. The window opens automatically as
soon as you select a trace function.

Illustration 11: Trace monitor

Representation
– In the bar on the left side of the window you can trace in which line of

the script a message appears.

K
U

N
B

U
S

 S
cr

ip
t E

di
to

r

KUNBUS-Scripter 19 / 46

– Lines of the script that have been executed are highlighted in green.
– Lines of the script that have not been executed are highlighted in red.

Tracing functions
In the navigation bar in the "Trace" menu item, you will find all tracing
functions:

Illustration 12: Trace Menu

Start Single Tracing With this function you have the possibility to trace the sequence of
your script step-by-step.

Start Continuous Tracing With this function you have the possibility to trace the sequence of
your script. In this mode, the script is executed cyclically.

Stop Tracing This function terminates the tracing.

K
U

N
B

U
S

 S
cr

ip
t E

di
to

r

KUNBUS-Scripter 20 / 46

2.7 Message Window
The message window can be found below the editor window.

1

2

3

1 Toolbar
2 Display window for messages
3 Status bar

Display window for messages In the message box you will find the following information:
– Status of the script
– Error notifications
– Further instructions

Illustration 13: Message Window

Tip!: By clicking in the message line the cursor jumps to the
corresponding line in the script.

Toolbar In the window bar, you can clear all messages. To do this, click on
"Clear All".

K
U

N
B

U
S

 S
cr

ip
t E

di
to

r

KUNBUS-Scripter 21 / 46

Status bar In the footer bar you will find information about the communication
settings for the module.

The colored status indicator indicates whether a connection to the
module exists:

Red No connection to the module
Green Connection to the module

In the example shown here, you can see in the footer bar that a
connection to the module exists. The communication settings are:
115200 bit/s, Even Parity, 1 Stop Bit.

K
U

N
B

U
S

 S
cr

ip
t E

di
to

r

KUNBUS-Scripter 22 / 46

3 KUNBUS Script Wizard

3.1 Overview
With the Script Wizard you can compile a script. You do not need any
programming skills to do this.

1
2

3

4

5

6

Illustration 14: Start view

1 Menu bar
2 Toolbar
3 Structure tree (Tree view)
4 Work area
5 Register bar
6 Status bar

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 23 / 46

3.2 Menu bar
This section describes the individual functions in the menu bar.

1 Menu File

Illustration 15: Menu File

1.1 New:
Open an empty script.

1.2 Open:
Open an existing script.

1.3 Save:
Save Wizard project as XML file.

1.4 Save As:
Save Wizard project as XML file and the script as PBS file. You can
also determine the storage location and filename.

1.5 Settings:
1.5.1 Connection Settings
Define communication settings between PC and module.

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 24 / 46

Illustration 16: Connection settings

1.5.2 Command Settings
Overview of the permitted syntax.
Info!: This menu is purely informative. You cannot assign any of your
own values here.

Illustration 17: Command settings

1.6 Options:
Define presettings:
– Automatic saving after changing the data
– Confirmation prompt before deleting
– Automatic name allocation when saving
– Once the script has been generated, open it in a separate tab.
– Display trace logging when starting
– Maximum number of lines after which logging should be deleted.

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 25 / 46

1.7 Exit:
Exit program.

2. Menu Script

Illustration 18: Menu Script

2.1 Generate Script
Generate Script.

2.2 Open Script in Editor
Open the generated script in the Script Editor.

3 Debug menu

Illustration 19: Debug menu

3.1 Start Debugging
This function executes the following actions:
– Generate script

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 26 / 46

– Compile script
– Transfer script to the module
– Starting script
– Open trace connection

3.2 Start Without Downloading
Check whether the script in the editor and the script on the module
are identical. If this is the case, a trace connection is established.
The trace can be displayed from now on. The script will not be
interrupted or restarted thereby.

3.3 Stop Debugging
Stops the trace connection.

3.4 Reset Module
Restart module.

4. Trace Menu

Illustration 20: Trace Menu

4.1 Start Single Trace
Load a trace from the module. The status indicator in the structure
tree indicates which parts of the scripts were executed successfully.
If the status message is green, the execution was successful. A red
status message indicates an error.

4.2 Start Continuous Trace
Poll trace cyclically. The result is displayed in the structure tree.

4.3 Stop Trace
Stops the trace connection.

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 27 / 46

3.3 Toolbar
You have quick access to the following operations via the toolbar:

New

Open an empty script.
Open

Open an existing script.
Save

Save as PBS file.
Collapse

Collapse a selected command in the structure tree.

Expand

A selected command in the structure tree is expanded.

Collapse/expand All

Collapse/Expand all commands in the structure tree.

Generate script

Generate a script.
Switch to the Editor

Open script in the Script Editor.

Start Debug

This function executes the following actions:
– Generate script
– Compile script
– Transfer script to the module
– Starting script
– Open trace connection

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 28 / 46

Start Without Downloading

Check whether the script in the editor and the script on the module
are identical. If this is the case, a trace connection is established.
The trace can be displayed from now on. The script will not be
interrupted or restarted thereby.

Stop Debug

Stops the trace connection

Reset Module

Restart module.
Start Single Tracing

Load a trace from the module. The status indicator in the structure
tree indicates which parts of the scripts were executed successfully.
If the status message is green, the execution was successful. A red
status message indicates an error.

Start Continuous Tracing

Load trace from the module cyclically. The result is displayed in the
structure tree.

Stop Tracing

Stops the trace connection.
Start Logging

Start logging. The logging in the trace is displayed continuously in the
logging window.

Stop Logging

Stop logging.

Clear Logging

Clear logging.

Jump to the top

Jump to the first line of the logging.

Jump to the bottom

Jump to the last line of the logging.

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 29 / 46

3.4 Creating Script with the KUNBUS-Wizard
Open the KUNBUS-Wizard

Properties In the work window you can see the Properties tab Here, you have to
define the settings for the communication with the module:

Field Setting Value Range
FieldbusType Enter the fieldbus that

you are using.
Name Assign a name for the

network
ErrorCounterAddress Enter the destination

register for the error
counter here.

SDI Input data range
0x1401-0x1480
To deactivate the func-
tion, enter 0x000 in this
field

ErrorHandling Enter the mode of the
error indicator

Each command has its
own error handling

FatalCounterAddress Enter the destination
register for the fatal er-
ror counter here.

SDI Input data range
0x1401-0x1480
To deactivate the func-
tion, enter 0x000 in this
field

LoopCounterAddress Enter the destination
register for the script
loop counter here.

SDI Input data range
0x1401-0x1480
To deactivate the func-
tion, enter 0x000 in this
field

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 30 / 46

Field Setting Value Range
ReceiveTimeout Enter the wait time until

the response of the
module here

Wait time in ms

Wait Time Enter the wait time be-
tween the script se-
quences.

Wait time in ms

Baudrate Enter the baudrate 2400
4800
9600
19200
38400
57600
115200

Parity Enter the parity. Even, odd, none
StopBits Enter the number of

Stop Bits.
0-2

Add a device ◦ Right-click on the "Network" line in the tree view
◦ Select "Add node".
ð You have added a new device.

Illustration 21: Add node

In the "Properties" window you can define an address and a name for
the device. Commands can be assigned to the device with this
address.

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 31 / 46

Command A command consists of one request and one response respectively.
The request is sent from the script to the node. A response is then
awaited. Since a command is mostly used multiple times with various
parameters, the Command Editor contains predefined commands
that you can select.

Add a new command ü You have already added a new device (node) in the structure tree
◦ In the tree view, right-click on the device that you want to assign a

command to.
◦ Select "Add Command"
ð The Command Editor opens. In the next section you will learn how to

create a command.
Command Editor In the Command Editor you can select commands for your script.

Illustration 22: Example with predefined commands

In the "Commands" window you will find the "Protocol specific
Command" section. The commands listed here have already been
predefined. They can vary depending on the fieldbus used. In this
example, we will use Modbus RTU as protocol.

Info!: The fieldbus used can be saved in the Properties, in the
"FieldbusType" field.

Predefined Commands ◦ Select the required command from the "Protocol specific Command"
section

ð The predefined command is displayed in the "Command" window. It is
divided into the query and response area. The query area represents a
query telegram that is sent to the module. The response area is the
response telegram that transfers the values from the module.

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 32 / 46

The commands perform the following functions:

Function Description
Read Holding Registers Reads measured values
Read Input Registers Reads input registers
Write Single Registers Writes on a single register
Write Multiple Registers Writes on multiple registers
User defined User defined

Create user defined
commands

◦ Select the "Edit" tab in the "Commands" window
◦ Enter a new command ID.
◦ Enter a command name.
◦ Select "User defined" to define any command you wish. If you select

"Modbus RTU" here, the command must begin with slave address and
function code and must end with a checksum. The fields in between can
be defined as you wish.

◦ Click on "Add" to define your script in the "Command" window.
Tip!: In the Edit tab you can delete the created command once again or
rename it.

◦ Add the required elements in the "Command" field. Right-click in the
"Query" or "Response" area.
ð A selection box with the available elements will open.

◦ Select the desired elements.

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 33 / 46

◦ Define the values of your elements. We also support you here by
means of predefined options.

◦ Save your command with "Save".
◦ In the left "Commands" column, select a command. The "Select

Command" button allows you to add the command to your script in the
main window.

◦ Click on "Exit" to exit the Command Editor.

Function and valid Values of
the Commands

Command Value Function
Display Name Freely definable Name that the field is

displayed with in the
main window.

Object Type Here, you can select the field type.
Byte The field includes one

byte with a fixed value.
Word The field includes 2

bytes with a fixed value.
DWord The field includes 4

bytes with a fixed value.
Register The field includes 2

bytes that are taken
from a memory register
or are written to it, de-
pending on whether the
field is used in the query
or response.

RegisterHigh This field includes 1
byte, whereby only the
Highbyte of the register
is used.

RegisterLow This field includes 1
byte, whereby only the
Lowbyte of the register
is used.

Checksum A checksum of the tele-
gram is inserted or ex-
pected.

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 34 / 46

Command Value Function
Value This line defines where the values come from or

where they are written. Here, the option is
strongly dependent on the type and whether the
field is used in the Query or Response. The fol-
lowing are possible:
User In the main window, you

have to specify the nu-
merical value to be
transferred.

Assign The value is assigned to
a register

NodeAddress The address of the de-
vice is entered.

FunctionID The command Id is en-
tered.

Define Command In the structure tree you now see the created command with all
associated fields. Values have already been entered for some fields.
These values are transferred automatically from the device or from
the command.
ü In the Command Editor you have compiled or selected a command.
◦ Click on a field.

ð In the "Properties" window you can now define the values for this
field.

◦ Check all fields and supplement the missing values.
ð You have now defined your command. In the next step you can

generate your script.

Field Meaning
Address Address of the device (node)
Function Number of the ModbusRTU function
Register Address Address from where the register is

read/written
Register Value Definition of the source or destina-

tion from where the values are read/
written

Checksum Returns a checksum
Quantity Number of registers that should be

read or written
Byte Count Number of bytes read/written

Table 1: Input value of the command fields

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 35 / 46

Example ü The input registers 4-7 are to be read from a ModbusRTU server with
the device address 7 and written in the module to the memory register
0x1410-0x1413.

ü The registers are to be read every 20 ms.
ü How often the register was read should be counted in the register

0x1405.
ü Any errors that occur should be counted in the register 0x1406.
◦ Open a new project with "File/New".
◦ Assign the following properties in the "Properties" window:

- ErrorCounterAddress: 0x1406
- LoopCounterAddress: 0x1405
-WaitTime: 20 (ms)

◦ Right-click on the "Network" element.
◦ Select "Add Node" in the context menu

ð You have now added a new device.
◦ Enter "7" as address in the field "Property".
◦ Right-click on the newly generated device (Node) in the structure tree.
◦ Select "Add Command" in the context menu.

ð The "Command Editor" window opens.
◦ Click on the predefined command "Read Input Registers"
◦ Click on "Select Command"

ð The command now appears in the structure tree
◦ Check all data fields for any missing values. You cannot assign the

address and function values. These values are transferred automatically
from the device.

ü Assign the values to the Query in the "Properties" window:
◦ Address: 4
◦ Quantity:4
ü Assign the values to the Response in the "Properties" window:
◦ Byte Count: 8. In Modbus, 4 registers with two bytes each are read. You

have to enter the number of bytes in this field.
◦ Location: 0x1410
◦ Input registers and checksum are returned automatically once the script

is running on the module.
◦ Click on the "Start Debugging" button
ð You have defined a script. It is now running on your module.

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 36 / 46

Generate script You have 2 options for generating a script:
– Select "Script>Generate Script" in the menu bar

– In the toolbar click on

Checking script
◦ Double-click to select a command in the structure tree.
ð The following window will open:

Here, you can trace the script sequence in the memory registers.

Select a register by double-clicking to trace the sequence in the
individual registers.

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 37 / 46

Error in Script If an error occurs in the script sequence, the Wizard will indicate this:
– The command concerned is highlighted by a red status indicator in the

structure tree.

Illustration 23: Error indicator in the structure tree

– The error is highlighted in red in the Trace Monitor and reported in the
message window.

Illustration 24: Error display in the trace monitor message window

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 38 / 46

Tip!: Switch to the Script-Editor with . The generated script is
displayed there. It can also be compiled and run on the module.
When you open the Trace View in the Script Editor, the source code
is displayed as well as the values of the variables for the listed lines.
Any code not executed is highlighted in red. Frequent error sources
are timeouts when waiting for the response and the use of register
addresses that do not exist in the module.

Structure tree The structure tree is a visualization of your script. Here, you can find
information on the status, function and content of the individual
commands. Everything displayed is dependent on the contents in
your script.

Illustration 25: Structure tree

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 39 / 46

Status indicator: The colored status indicator before the command
is active/updated once a trace has been loaded from the module. It
indicates whether the command is being executed or whether an
error has occurred.

Green No Error
Red Error
Grey No connection to the network or no

information about the command is
available because an error occurred
previously

Contents of the command: Below the function of the command is a
list showing what elements the command consists of.

First you will see whether your command sends a query to the
module and receives a response from the module.

The level below query and response shows the elements that the
query and response consist of.

K
U

N
B

U
S

 S
cr

ip
t W

iz
ar

d

KUNBUS-Scripter 40 / 46

4 Appendix

4.1 Example Script
Script:

SECTION_CONFIG;

configPort(38400,even,1,8); // BaudRate, Parity, Stop, Data

setBigEndian(); // set the byte-order to Big Endian

decl(var1, 1); // declare var1 as one-Byte variable

decl(var2, 2); // declare var2 as two-Byte variable

decl(var4, 4); // declare var4 as four Byte variable

declArray(var5, 10); // declare var5 as array with the size of 10 bytes
SECTION_INIT;

setMBReg(0x1401, 1); // set register 0x1401 to 1 while the script runs

set(var1, 0x03); //var1 has the value 3

set(var2, 0x0101);

set(var4, 0x12345678);
SECTION_RUN;

wait(100); // wait 100 ms

startTimer0(100); // expect response in 100 ms or error

add(var2, var1); //add var2 and var1 and save the result in var2

minus(var4, var1);

divide(var4, var1);

multiply(var4, var2);

setArray(var5, 3, 4, 250, var1, var1); // var5 = {3, 4, 250, 3, 3}

sendWithCRC(0x11, 0x1201, var2, var5);

// send data 0x11, 0x12, 0x01, high byte of var2, low byte of var2, 3,

4, 250, 3, 3, CRC, CRC

startCRC(0); // start CRC for subsequent bytes

readStore(var5, 0x05); // store 5 bytes in var5

stopCRC(); // read 2 more bytes and compare them to the calculated

CRC
SECTION_ERROR;

setMBReg(0x1401, 2); // set register 0x1401 to 2 if an error occurred
SECTION_FATAL;

stop(); // stop

A
pp

en
di

x

KUNBUS-Scripter 41 / 46

4.2 Overview of the Script Commands
add(parameter1,
parameter2);

This command counts the value from parameter2 to parameter1 and
stores it in parameter1. In the course of this, parameter1 must be a
variable.

configPort(Baudrate, Parity,
StopBit, DataBit);

This command configures the serial interface.

The first parameter defines the baudrate. Permissible values are 110,
300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600 and
115200.

The parity is defined as text. 'even', 'odd' and 'none' are allowed.

The third argument defines the number of stop bits, value range 0 tos
2.

The fourth argument defines the number of data bits, value range 7
to 8.

decl(name ,size); This command declares a variable with name name and size size.
Variables of 1, 2 and 4 bytes in size are possible. A total of up to 20
variables and arrays can be used in a script.

declArray(name, size); This command declares an array name (name) and size (size).
– The size can have values between 1 and 128.
– All arrays together must not be longer thans 256 bytes.

divide(parameter1,
parameter2);

This command divides the value of parameter1 by the value of
parameter2. The result is stored in parameter1. parameter1 must be
a variable. If parameter2 has the value 0, an exception is triggered.

getMBReg(value, address);
getMBReg(value, address,
number);

This command stores the value of the memory register with the
address address in the variable value. Value can be a variable or an
array. The number parameter specifies the number of registers to be
read. If it is not specified, one register is read.

A
pp

en
di

x

KUNBUS-Scripter 42 / 46

getMBRegHigh(value,
address);
getMBRegHigh(value,
address, number);
getMBRegLow(value,
address);
getMBRegLow(value,
address, number);

This command stores the value of the memory register with the
address address in the variable value. Value can be a variable or an
array. The number parameter specifies the number of registers to be
read. If it is not specified, only one register is read. Only the higher-
value or lower-value byte is read from the registers.

If-expression If par1 cmp par2 then … endif

If par1 cmp par2 then … else … endif

The condition par1 cmp par2 is checked:
– If the condition is true, the commands are executed after then.
– If the condition is false and an else-branch exists, the commands are

executed after else.
– The script is then continued after endif.

The condition consists ofs 1 variables or constants with one
comparative operator in between. The following operators are
possible:

Operator Description Example for true Example for false
== Equal to 1 == 1 1 == 2
!= Unequal to 1 != 2 3 != 3
< Less than 1 < 2 2 < 1
<= Less than or

equal to
1 <= 3 3 <= 1

> Greater than 3 > 2 2 > 3
>= Greater than or

equal to
3 >= 3 2 >= 3

bs Bit set 0x02 bs 1 0x02 bs 2
bc Bit not set 0x10 bc 3 0x10 bc 4

bs (bit set) and bc (bit cleared) check whether or not a bit is set in a
value. The first parameter is the value, in which the bit is checked.
The second is the bit position, whereby the lowest value bit is
checked with 0 and 31 is checked for the highest value bit. The
number 0x10 would be 10000b as a binary number, i.e. only bit 4 is
set. Thus, (0x10 bs 4) would be true and (0x10 bc 4) false.

incCounter0(value);
incCounter1(value);

There are 2 counters: Counter0 and Counter1. With the
resetCounter0 or resetCounter1 commands you can set the counter
to 0. Each time the functions incCounter0 or incCounter1 are
invoked, the counter is incremented.

A
pp

en
di

x

KUNBUS-Scripter 43 / 46

minus(parameter1,
parameter2);

This command subtracts the value of parameter2 from parameter1
and stores it in parameter1. In the course of this, parameter1 must be
a variable.

Info!: The value of parameter1 must be greater than the value of
parameter2 so that the result is not negative. If the case of a negative
result, an exception is triggered.

modulo(parameter1,
parameter2);

This command divides the value of parameter1 by parameter2. The
division rest is stored in parameter1. parameter1 must be a variable.
If parameter2 has the value 0, an exception is triggered.

multiply(parameter1,
parameter2);

This command multiplies both parameters. The result is stored in
parameter1. In the course of this, parameter1 must be a variable.

read (parameter1 ,
paramter2, …);

This command compares the number of bytes received with the
values of the arguments. If the values are different, an exception is
triggered.

Info!:If startTimer0() was invoked previously and not enough bytes
were received in the specified time, an exception will also be
triggered.

Info!:The function first receives the specified number of bytes. After
that, it compares the data values.
Example: read(1,2,3); receives 3 bytes and then checks whether the
first byte is 1.

If another response is desired, read must be invoked several times:
read(1); read(2); read(3);
– The function can have between 1 and 16 parameters.
– All data types are allowed.

readSkip(length); This command receives length bytes. These bytes are taken into
account during the checksum calculation.

readStore(parameter1,
parameter2);

With this command you store the number of bytes to be received in
parameter2 . These are saved in parameter1 .
– parameter1 must be a variable or an array.

resetCounter0();
resetCounter1();

See incCounter0

A
pp

en
di

x

KUNBUS-Scripter 44 / 46

send(parameter1,
parameter2, …);

This command sends data via the serial interface.
– The function can have between 1 and 16 parameters.
– All data types are allowed.
– In the case of 2 or 4 byte constants and variables, the bytes are output

according to the set sequences (setBigEndian() or setLittleEndian()).
– In the case of arrays, the bytes are sent in the same sequence, in which

they are in the array.

sendWithBCC(parameter1,
parameter2, …);

This command sends data via the serial interface.
– The function can have between 1 and 16 parameters.
– All data types are allowed.
– In the case of 2 or 4 byte constants and variables, the bytes are output

according to the set sequences (setBigEndian() or setLittleEndian()).
– In the case of arrays, the bytes are sent in the same sequence, in which

they are in the array.

In addition, a 1-byte checksum is also sent after the data, which is
calculated from the data. You can define the type of checksums
using the function startBCC().

sendWithCRC(parameter1,
parameter2, …);

This command sends data via the serial interface.
– The function can have between 1 and 16 parameters.
– All data types are allowed.
– In the case of 2 or 4 byte constants and variables, the bytes are output

according to the set sequences (setBigEndian() or setLittleEndian()).
– In the case of arrays, the bytes are sent in the same sequence, in which

they are in the array.

In addition, a 2-byte checksum is also sent after the data, which is
calculated from the data with the CRC-16 procedure.

set(name, value); This command assigns the value value to the variable name. The
values can be constants or variables.

setArray(name, parameter1,
paramter2, …);

The values of the remaining parameters are written in the array
name. If only one parameter is available, it can be a 1, 2 or 4 byte
variable or constant. During writing, the byte sequences defined by
setLittleEndian() or setBigEndian() is used. If there is more than one
parameter, only 1 byte constants or variables can be specified.

setBigEndian(); This command defines the byte sequence to Big Endian.

setLittleEndian(); This command defines the byte sequence to Little Endian.

A
pp

en
di

x

KUNBUS-Scripter 45 / 46

setMBReg(address, value); This command writes the value in value in the memory address with
the address address. The value must be a constant, variable or an
array. The length of the array must be a multiple of 2.
Info!:The memory registers are always two bytes in size. A variable
of four bytes or an array that contains more than two bytes is further
written in the following register. The address is incremented.

setMBRegHigh(address,
value);
setMBRegLow(address,
value);

This command writes the value in value in the memory address with
the address address. With setMBRegHigh() only the higher-value
byte is written, the lower-value byte remains unchanged. With
setMBRegLow() only the lower-value byte is written accordingly.

value can be a constant, variable or an array. With this function one
byte each is written in the memory register. A variable or an array
that contains more than two bytes is further written in the following
registers. The address is incremented.

startBCC(mode); This command starts a checksum calculation of the data received. It
makes no difference here which read-function receives the data. With
mode the method of the checksum calculation is selected:

mode = 0 -> ZERO_MINUS_SUM method:

Calculates the sum of all bytes received and subtracts the result from
0.

mode = 1-> BITWISE_NEGATION:

Calculates the sum of all bytes received and negates the result bit by
bit.

mode = 2-> ADDITION:

Calculates the sum of all bytes received

Mode = 3 -> XOR

Concatenates all bytes bit by bit with XOR.

startCRC(mode); With this command a checksum calculation starts on the data
received. It makes no difference here which read-function receives
the data. With mode the method of the checksum calculation is
selected, however, only 0 is permitted for a CRC16 calculation at the
moment.

A
pp

en
di

x

KUNBUS-Scripter 46 / 46

startTimer0(value);
This command is used to limit the wait time of a subsequent read
function. A timer is started that runs for the value milliseconds. If it
expires while a read function is still waiting for data, an error is then
triggered and the next SECTION_ERROR is executed.

stop(); This command stops the execution of the script. Restart the module
to restart the script.

stopBCC(); Prerequisite: You have started a checksum calculation.

With this command stopBCC receives a further byte with each
incoming read function. stopBCC compares this byte with the
calculated checksum. If the checksums do not match, an exception is
triggered.

stopCRC(); Prerequisite: You have started a checksum calculation.

If, after invoking StartCRC, a byte with a read function is received,
the checksum is updated. stopCRC now receives two additional
bytes and compares these with the calculated checksum. If these do
not match, an error is triggered.

wait(time); This command interrupts the program sequence for the for the
specified time . The value is specified in milliseconds.

waitSequence(parameter1,
parameter2, …);

This command interrupts the program sequence until the specified
byte sequence is received.

Permissible parameters are constants and variables.

A
pp

en
di

x

	 Table of Contents
	1 Overview
	1.1 Overview
	1.2 Functionality
	1.3 Start Menu

	2 KUNBUS Script Editor
	2.1 Overview
	2.2 Menu bar
	2.3 Toolbar
	2.4 Script Editor
	2.5 Starting script
	2.6 Trace monitor
	2.7 Message Window

	3 KUNBUS Script Wizard
	3.1 Overview
	3.2 Menu bar
	3.3 Toolbar
	3.4 Creating Script with the KUNBUS-Wizard

	4 Appendix
	4.1 Example Script
	4.2 Overview of the Script Commands

